Authors |
Hickson LJ, Eirin A, Conley SM, Taner T, Bian X, MBBCh AS, Herrmann SM, Mehta RA, McKenzie TJ, Kellogg TA, Kirkland JL, Tchkonia T, Saadiq IM, Tang H, Jordan KL, Zhu X, MBBCh MDG, Rule AD, van Wijnen AJ, Textor SC, Lerman LO
|
Submitted By |
LaTonya Hickson on 5/5/2021 |
Status |
Published |
Journal |
Diabetes |
Year |
2021 |
Date Published |
|
Volume : Pages |
Not Specified : Not Specified |
PubMed Reference |
33858824 |
Abstract |
Mesenchymal stem/stromal cells (MSC) facilitate repair in experimental diabetic kidney disease (DKD). However, the hyperglycemic and uremic milieu may diminish regenerative capacity of patient-derived therapy. We hypothesized that DKD reduces human MSC paracrine function. Adipose-derived MSC from 38 DKD participants and 16 controls were assessed for cell surface markers, tri-lineage differentiation, RNA-sequencing (RNA-seq), in vitro function (co-culture or conditioned medium experiments with T cells and human kidney cells [HK-2]), secretome profile, and cellular senescence abundance. The direction of association between MSC function and patient characteristics were also tested. RNA-seq analysis identified 353 differentially expressed genes and downregulation of several immunomodulatory genes/pathways in DKD- vs Control-MSC. DKD-MSC phenotype, differentiation, and tube formation capacity were preserved but migration was reduced. DKD-MSC with and without interferon-? priming inhibited T-cell proliferation greater than Control-MSC. DKD-MSC-medium contained higher levels of anti-inflammatory cytokines (indoleamine 2,3-deoxygenase-1 and prostaglandin-E2) and pro-repair factors (hepatocyte growth factor and stromal cell-derived factor-1) but lower Interleukin-6 vs. Control-MSC-medium. DKD-MSC-medium protected high glucose plus transforming growth factor-ß-exposed HK-2 cells by reducing apoptotic, fibrotic and inflammatory marker expression. Few DKD-MSC functions were affected by patient characteristics including age, gender, body mass index, hemoglobin A1c, kidney function or urine albumin excretion. However, senescence-associated-ß-galactosidase activity was lower in DKD-MSC from participants on metformin therapy. Therefore, while DKD altered the transcriptome and migratory function of culture-expanded MSC, DKD-MSC functionality, trophic factor secretion and immunomodulatory activities contributing to repair remained intact. These observations support testing patient-derived MSC therapy and may inform preconditioning regimens in DKD clinical trials.
|
|
|