Sign-up for our newsletter
MAIN
Event Calendar
Awardee Reports
ABOUT DIACOMP
Citing DiaComp
Contact
Committees
Institutions
Awardee Reports
Funding Programs
Pilot & Feasibility
Conference Support
Summer Student
Collaborative
Publications
Bioinformatics
RESOURCES
Protocols & Methods
Reagents & Resources
Tissues & Samples
Mouse Diet
Breeding Schemes
Validation Criteria
Histology
IMPC / KOMP Data
Publications
Bioinformatics
FUNDING PROGRAMS
Pilot & Feasibility
Conference Support
Summer Student
Collaborative
CONTACT
PARTICIPANT AREA
Login
Request Account
▹
DiaComp Funded Abstracts
▹
Pilot & Feasibility
▹
Funding Programs
Pilot & Feasibility Program Application Abstract
Thermosenitive TRPM8 channels and diabetic erectile dysfunction
Clinton Webb
(Augusta, GA)
Pilot & Feasibility Program
Erectile dysfunction (ED) seriously diminishes quality of life and is a warning of undetected circulatory problems elsewhere in the body. Diabetes increases the risk of ED and the onset may be at a relatively young age. ED prevalence is expected to increase due to rising diabetes rates from obesity, population aging, and increased number of children diagnosed with type 2 diabetes. A wide variety of therapeutic options are available for the treatment of ED, including vacuum therapy, intra-cavernous and transurethral drug therapy, surgery and oral medications. Unfortunately, despite these options, ED persists in many patients. Viagra and other phosphodiesterase-5 (PDE5) inhibitors have been successful in the treatment of many forms of ED, but often, patients fail to benefit from use of these agents. This is particularly relevant to diabetic patients where it is estimated that as many as 40-60% do not respond to PDE5 inhibitors. Also, PDE5 inhibitors are often contraindicated in diabetic patients because they take nitrates for angina or myocardial infarction. Thus, there is a critical need to develop alternative therapeutic agents to treat ED in diabetic patients. Transient receptor potential (TRP) channels are typically Ca2+ permeable, polymodal and display variable gating mechanisms. They are expressed in a wide variety of cell types, where they are involved in many physiological functions. Thus, dysfunction of these channels can cause important acquired or inherited human diseases. The goal of this project is to investigate the role of thermosensitive TRPM8 channels in the internal pudendal arteries and corpus cavernosum, tissues that are critical for sexual function and known to undergo pathological changes due to the diabetic state. This research plan will also test the innovative hypothesis that in diabetes, a therapeutic approach utilizing agonists at TRPM8 will improve the erection in diabetes. Three specific aims are proposed: 1) to investigate the expression and mechanism of action of TRPM8 activation in the pudendal artery and corpus cavernosum from diabetic mice (db/db) and their nondiabetic controls; 2) to confirm the mechanism of action of TRPM8 activation in db/db mice using a knockdown strategy to reduce TRPM8 channel expression in tissues isolated form db/db mice and their controls; 3) to test the hypothesis that chronic administration of a TRPM8 agonist (menthol and icilin, osmotic minipump) in diabetic leads to the prevention and improvement of ED.
No report available yet.
Welcome to the DiaComp Login / Account Request Page.
Email Address:
Password:
Note: Passwords are case-sensitive.
Please save my Email Address on this machine.
Not a member?
If you are a funded DiaComp investigator, a member of an investigator's lab,
or an external advisor to the consortium, please
request an account.
Forgot your password?
Enter your Email Address and
click here.
ERROR!
There was a problem with the page:
User Info
Safari Browser Detected...
We strive to make the DiaComp site compatable with as many browsers as possible, but some of our third party tools don't work with the Safari browser.
In order to explore this site we highly recommend using the most recent versions of the following browsers:
Internet Explorer
Google Chrome
FireFox
Please acknowledge all posters, manuscripts or scientific materials that were generated in part or whole using funds from the Diabetic Complications Consortium(DiaComp) using the following text:
Financial support for this work provided by the NIDDK Diabetic Complications Consortium (RRID:SCR_001415, www.diacomp.org), grants DK076169 and DK115255
Citation text and image have been copied to your clipboard. You may now paste them into your document. Thank you!