
Normalizing Energy Expenditure in Mice

Karl J. Kaiyala, Ph.D Kayoko Ogimoto, Ph.D Gregory J. Morton, Ph.D Michael W. Schwartz, MD

Late 1700s — Antoine Lavoisier and Pierre-Simone Laplace: body mass is a major determinant of EE

Thus, "normalization" is needed to:

- ➤ Evaluate the effect of a variable on EE without confounding by differences in body size
- ➤ Determine whether a variable changes the per-kg EE value of body mass or a body mass compartment
- \triangleright EE (cal/min) = VO₂ (ml/min) X 5

Common methods of normalization

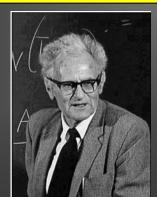
Method

Assumption

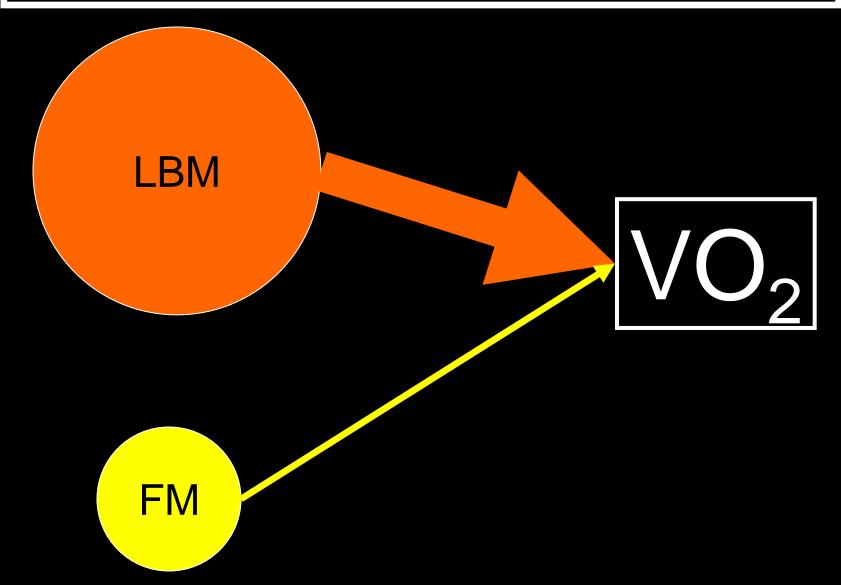
1 Anonymous

 $VO_2 = C Body mass^1$

2 Rubner



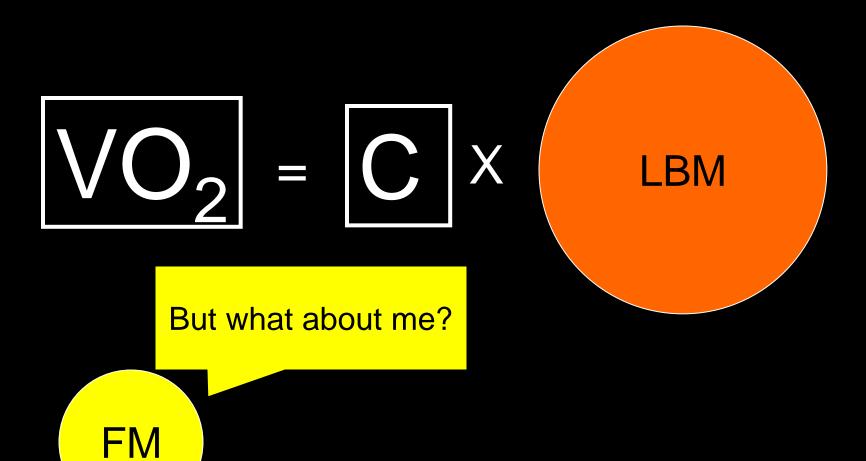
VO₂
Body Mass^{.67}


 $VO_2 = C Body mass^{.67}$

3 Kleiber (1932)*

 $VO_2 = C Body mass^{.75}$

Standard model of the major determinant of VO₂


And so, with the advent of small animal body composition technology....

 $\sqrt{O_2}$ norm =

Assumes

$$\begin{bmatrix} VO_2 \end{bmatrix} = \begin{bmatrix} C \end{bmatrix} X$$

AND

Question

Do the commonly used normalization methods remove the effect of varying body size from VO₂ in mice?

Approach

Compare four different normalization methods using data from 142 mice (C57B6) evaluated for VO₂ and body composition in Seattle's MMPC

- 66 wildtypes (25 female, 41 male)
- 76 mutants (28 female, 48 male; none were models of monogenic obesity)
- 63 were tested twice (once on chow, then on HFD)
- Total number of evaluations = 205.

Some details

- All mice were acclimated to and then studied in calorimeters for 36 to 48 hours
- Analyzed data from second light cycle and second dark cycle

Dependent variables:

- 1) Minimum VO₂ recorded during light cycle
- 2) Average VO₂ computed over the 24 hours encompassing the light and dark cycles

Yellow = HFD

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Yellow = HFD

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Yellow = HFD; p < .0001

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

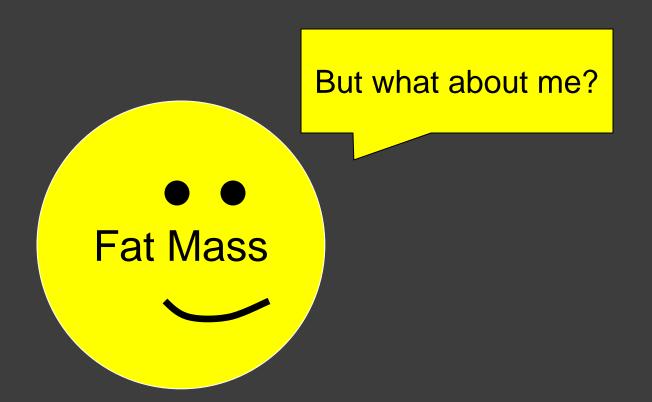
QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Yellow = HFD; p = .56

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Yellow = HFD; p = .2

Yellow = HFD; p = .02


QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

SUMMARY 1

Commonly used normalization methods

- Do not fully remove variation in body mass from the normalized VO₂ value
- Implies that other factors are important and that other approaches to normalization are needed

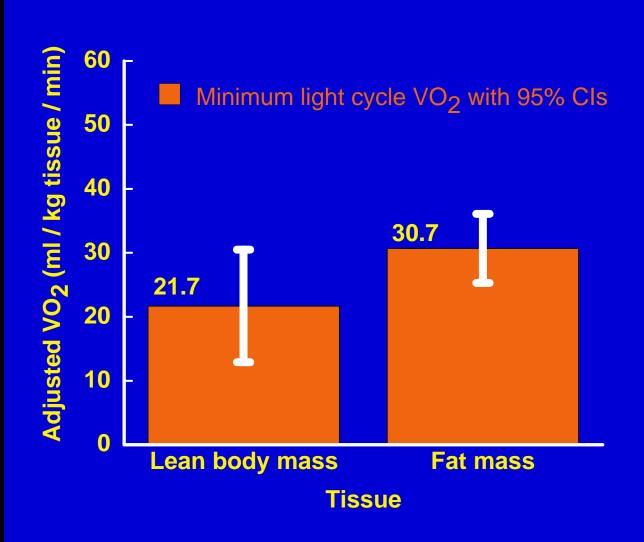
One thing ignored by commonly used normalization methods:

Wildtype Transgenic > 5-Fold difference in mean FM 16 13 QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. 6 5

QUESTION

Is fat mass an important determinant of VO₂?

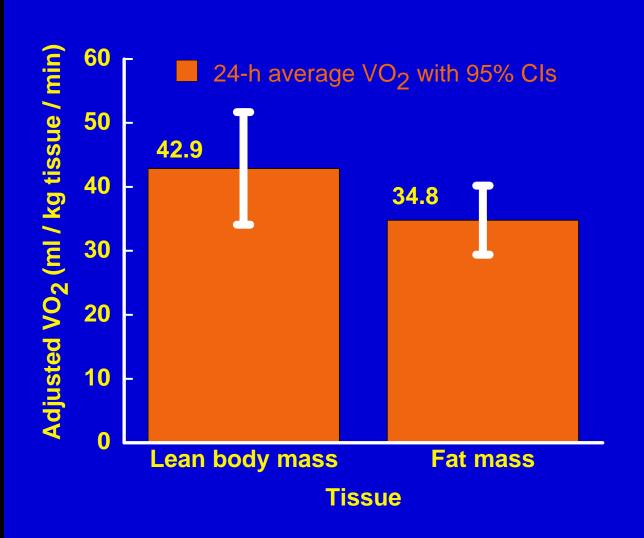
APPROACH


- Assess whether fat mass is associated with VO₂ independently of lean body mass and other important predictors
- Used GEE to handle the 63 repeated measurements

Significant predictors of VO₂

Significance	e of predictor
Min VO ₂	Ave VO ₂
.000	.000
.000	.000
.000	.000
.000	.01
.004	.02
	.000
	Min VO ₂ .000 .000 .000 .000

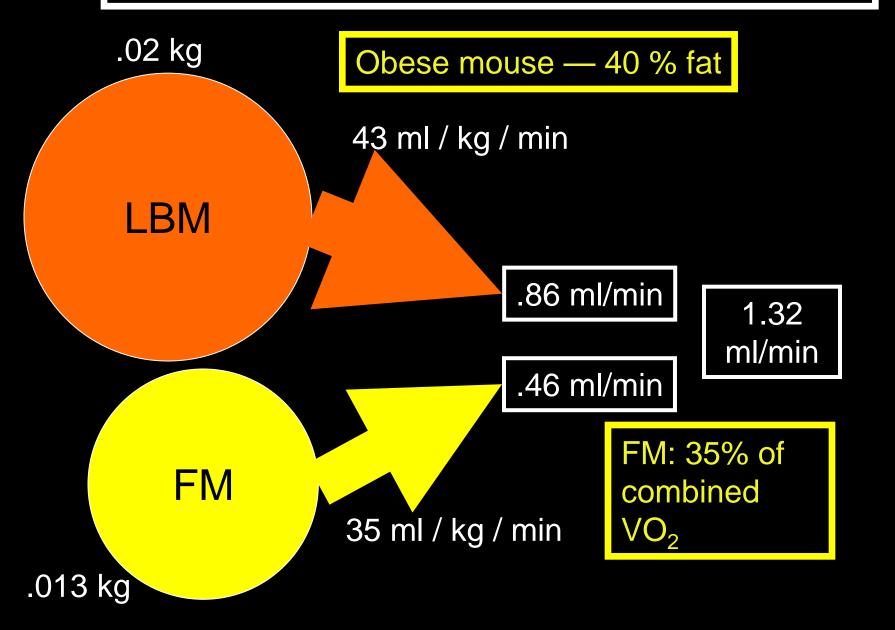
QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.


Estimated contributions of fat and lean body mass to minimum VO₂

Model includes:

- Diet
- Gender
- Genotype

Estimated contributions of fat and lean body mass to average VO₂



Model includes:

- Diet
- Gender
- Genotype
- Activity

The Point: FM is associated with a substantial per-kg oxygen cost

Revised model applied to 24-h average VO₂

Implications for normalizing VO₂ in mice

Data analysis:

- Should *include* multiple regression or GEE to adjust VO₂ for FM, LBM and the primary independent variables *if sample sizes permit* (ANCOVA)
- But, since the regression-based oxygen costs assigned to FM and LBM are comparable, you can instead adjust for total BM and the primary I.V.s if sample sizes are modest

Example for a very typical study

- Use ANCOVA to evaluate the effects of two independent variables adjusting for BM as a covariate
- Estimates mean (95% CI) VO₂ as a function of each independent variable at the overall mean BM variation in BM is removed from the VO₂ group means!
- Divide adjusted estimates by overall mean BM to derive a mass-specific normalization

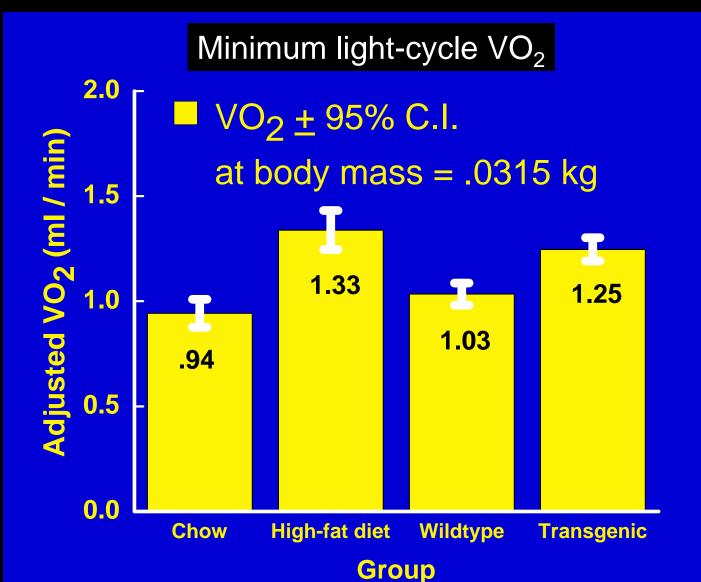
Example using a PKA study

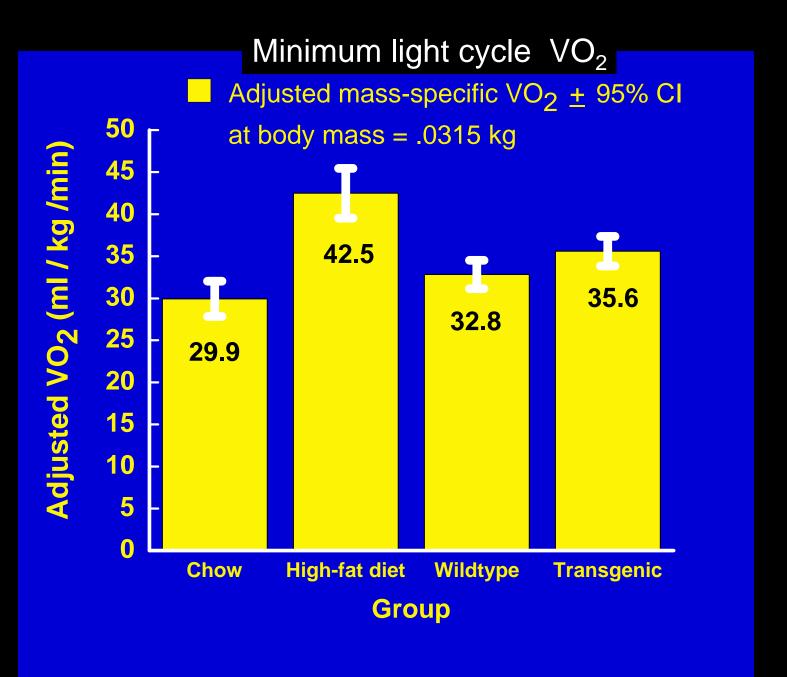
Count

			Genotype	
		Wildtype	Transgenic	Total
Diet	Chow	8	8	16
	High fat	8	6	14
	Total	16	14	30

Example using a PKA study

Parameter Estimates


			95% Wald Conf	idence Interval	Нурс	thesis Test	
Parameter	В	Std. Error	Lower	Upper	Wald Chi- Square	df	Sig.
(Intercept)	.748	.2169	.323	1.173	11.912	1	.001
bodymasskg	22.131	6.0873	10.200	34.061	13.217	1	.000
[diet=.00]	395	.0739	540	250	28.583	1	.000
[diet=1.00]	0ª						
[genotype=.00]	213	.0411	294	133	26.882	1	.000
[genotype=1.00]	0ª						
(Scale)	1						


Dependent Variable: Minimum light cycle VO2 (ml/min)

Model: (Intercept), bodymassky, diet, genotype

- Casas ---- la serva alcie u sus acasas in un describent

Here, the per-kg VO₂ estimate of body mass is 22.13 ml/kg/min...

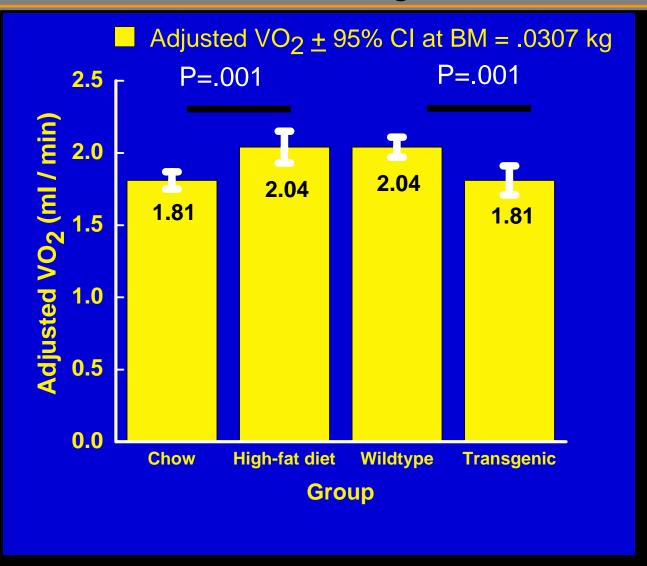
Example from a study with larger sample sizes

Count

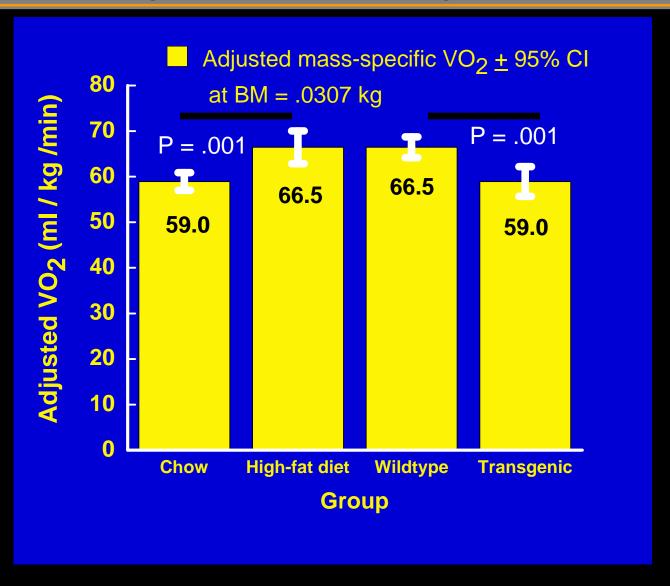
		Genotype		
		Wildtype	Transgenic	Total
Diet	Chow	20	20	40
	High fat	10	10	20
	Total	30	30	60

Example from a study with larger sample sizes

Dependent variable: 24-h average VO₂


Parameter Estimates

			95% Wald Conf	idence Interval	Нурс	thesis Test	
Parameter	В	Std. Error	Lower	Upper	Wald Chi- Square	df	Sig.
(Intercept)	.774	.1680	.445	1.104	21.251	1	.000
leankg	38.378	11.2745	16.281	60.476	11.587	1	.001
fatkg	38.650	6.3139	26.275	51.025	37.472	1	.000
[diet=.00]	230	.0693	365	094	10.976	1	.001
[diet=1.00]	0ª						
[genotype=.00]	.234	.0712	.094	.373	10.794	1	.001
[genotype=1.00]	0ª						
(Scale)	1						


Dependent Variable: 24-h mean VO2 (ml/min) Model: (Intercept), leankg, fatkg, diet, genotype

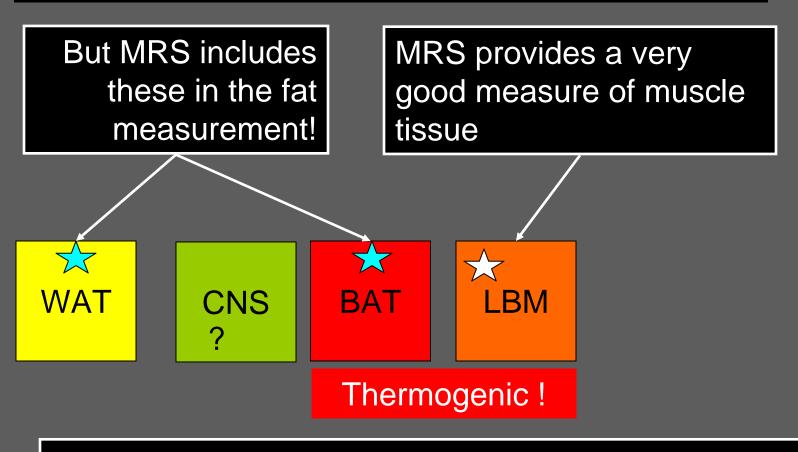
Here, the LBM and FM per-kg VO₂ estimates are almost identical at about 38.5 ml/kg/min...

24-h average VO2

Example using a model with larger sample sizes

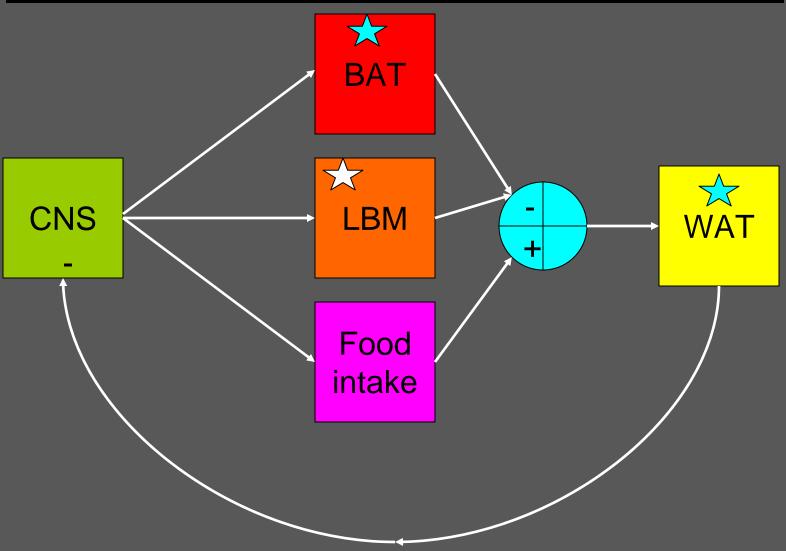
What if we had just compared mass-specific VO₂ values using the historical method?

Diet and genotype both significant


Diet effect not significant

SUMMARY 2

ANCOVA


- Does remove variation in body mass (or lean mass / fat mass) from treatment group mean VO₂ values
- Requires no dubious prior assumptions and even if the "weights" assigned to LBM and FM are questionable, the precision of mean VO₂ estimates is improved

A signature feature of the data set: high precision measurement of body fat and lean tissue by MRS

Implies that FM_{MRS} is a proxy for BAT mass/activity

Coupling of BAT and LBM themogenesis to adiposity by negative feedback regulation implies | LBM_{MRI} | and |FM_{MRI}| are determinants of VO₂

Theoretical relationship that linking per - kg VO
$$_2$$
 values for fat mass (B $_{FM}$), and lean body mass (B $_{LBM}$) to the per - kg value for body mass (B $_{BM}$)

Given that fat mass = $(\frac{\% \text{ Fat}}{100})$ (Body mass)

Lean body mass $\approx (1 - \frac{\% \text{ Fat}}{100})$ (Body mass)

It is easy to show that

Theoretical B $_{BM} = [(B_{FM} - B_{LBM})(\frac{\% \text{Fat}}{100}) + B_{LBM})]$ (Body mass)

Point: *B* estimates for body mass are weighted averages of the *B* values for fat mass and lean body mass

п	Estimated contribution to VO2 (ml/kg tissue/min)			
Tissue ¤	Tissue Minimum light cycle VO ₂			
9	9	4		
Lean body mass x	21.7 <u>+</u> 8.8 ¤	42.9 <u>+</u> 10.7 ¤		
9	Я	9		
Fat mass ¤	30.7 ± 5.4 ¤	34.8 <u>+</u> 6.4		
4	Ф	9		
Body mass ¤	27.8 + 4.3 ¤	36.9 + 4.8 ¤		
Theoretical Body	Φ.	₽		
Mass assuming 23% fat ¤	23.8 ¤	41.0 ¤		