Diabetic Complications Consortium

Application Title: Automated quantification of ultrastructural pathology of diabetic
nephropathy using deep learning.

Principal Investigator: Behzad Najafian, M.D.

1. Project Accomplishments:

We have developed a novel validated deep learning model for foot process width (FPW)
measurement on electron microscopy (EM) images.

2. Specific Aims:

Aim #1: To develop deep learning models for accurate estimation of foot process width in
diabetic nephropathy.

Results: We developed a novel model named Forknet for foot process width measurement. Our
accomplishments are summarized below:

1. Model Design: A custom U-Net based model was designed to detect both PGBMI and the
podocyte filtration slit diaphragms in two separate layers (Figure 1).

2. Post process script for FPW calculation: The calculation of the FPW was done in a post
process script.

3. Model training: In order to reduce over-fitting and help improve validation accuracy
during training, the images went through a randomized augmentation process whereby
they were randomly scaled, flipped, shifted (adjusting mean and contrast), and rotated.
The validation dataset was not augmented to keep validation scores closer to their real
values and evaluate the training and test accuracy divergence. Images, during the training
phase, were manually segmented with a 10% test split, meaning that every 1 in 10 images
was not included in the model optimizer to allow detection of model under-fitting or
model overfitting. Training involved a semi-online learning method, which initially
trained the model on a small sample. When the manual segmentation data count reached
~200 images, the model was used in the Segmentation Utility to segment new images,
which were corrected by our team to be appended to the dataset. The training software
reanalyzed the entire dataset and reduced the learning rate of the model as the accuracy
plateaued. Only the highest accuracy, measured by dice similarity coefficient (DSC),
models were saved for later use. This process was continued until the training dataset was
complete. Once complete, the entire dataset was run to capture the highest validation
DSC. Once a plateau was reached and the learning rate was dropped to 0, the model
weights were repackaged with the Report Utility, and made available for remote
predictions.



4. Compiling the package: After successfully trained on the entire dataset, the user interface,
pre-processing, post-processing, weights, and architecture, and vision/deep learning
frameworks were all compiled into one application.

5. Report Utility: We built a post-processing tool called UW Report Utility that can process
and view the predictions from the network in real time. The workflow and the post-
processing steps are shown in Figure 2.

6. Model validation: Performance of the model was analyzed using two metrics, DSC and
model accuracy. Each manual segmentation mask, per category, was compared to the
prediction mask of the model. DSC was calculated by dividing the intersection by the
total area of the masks, with an additional smoothing constant of 1 DSC= (2|X N Y|+
D/(IX| + Y] + 1) for each category. DSC values range from 0-1, where 0 represents no
pixel overlap and 1 represents perfect pixel overlap between the two masks. DSC values
obtained from testing different set are provided in Table 1.

7. Testing the model on diabetic biopsies. FPW was measured on digital electron
microscopy images (~30,000x) obtained using systematic uniform random sampling from
type 1 diabetic patients. The results are provided in table 2.

Input Image PGBMI Mask Slit Mask FPW

Figure 1. Model of the ForkNet Architecture. Top: A schematlc representatlon of the
architecture showing an input EM Image to the left, conv2d blocks max pooling for downscaling,
split branches, deconv2d and conv2d blocks for upscaling, and output layers to the right. Layer



connections are identified as solid directional lines, and skip connections are identified as dashed
directional lines. Note: the skip connection from the membrane branch to the slit branch. Most
residual connections used convolutional blocks rather than identity connections. Bottom: A-E
and F-J show two examples of input images (A and F), resulting in corresponding PGBMI (B
and G) and slit masks (C and H) with merged images, showing the masks superimposed on the
input images (D and I); and the post-processing output with individual foot process width (FPW)
measurements (E and J). F’-J’ show magnified views of the red boxes in corresponding F-J
images. The size of the dots in the slit mask and merged images reflects the model confidence in
prediction of a slit.
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Figure 2. ForkNet post-processing script general workflow. Top left image: a low magnification
view of a glomerulus. The small squares represent systematic uniform random sampling (SURS)
images taken at higher magnification (30,000 x) shown in bottom left that are used for foot
process width (FPW) measurements. The flowchart on the right shows the post-processing
workflow. The input images are normalized and go through various filters and processing, the



output of which will be semantic segmentation of filtration slits and podocyte — glomerular

basement membrane interface (PGBMI). The length of the individual segments (PGBMI limited
between two adjacent slits) is measured and exported. B. ForkNet model architecture. On the
left, an input EM Image is shown (30,000 x, obtained using SURS). Different components of the
architecture are shown in color coded boxes that are connected through solid or dashed lines as
explained in the box at the bottom left corner. In summary, from left to right, the input image
goes through conv2d downscaling blocks, split branches, and deconv2d upscaling to result in
PGBMI and slit output masks.

Table 1. Examples of dice coefficient (DSC) values for various training groups for podocyte -
glomerular basement membrane interface (PGBMI) and filtration slit masks used for evaluation
of model performance

Training Mean DSC for PGBMI Mean DSC for Slit
Group

1 0.76 0.56

2 0.36 0.27

3 0.72 0.48

4 0.70 0.56

5 0.78 0.58

6 0.72 0.46

7 0.74 0.48

Table 2. Output data from research biopsies from patients with type 1 diabetes:
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Aim #2: To develop DL models for accurate semantic segmentation of GBM and accurate
estimation of GBM width in DN.

1. Developing a Segmentation Utility: Creating a custom multi-class utility called UW
Segmentation Utility using wxPython to manually classify podocyte-glomerular
basement membrane interface (PGBMI) and foot process slits (Figure 3).

2. Model training: A total of 8,152,303 nm of PGBMI were manually segmented in the
training set.

3. Skeletonization of the GBM (ie get the center line) and measuring the GBM width at
random points. At each point we take the tangent of the line and then move a step away
from the center defined as dx, at this new step we get the new tangent (or line distance
that's closest to the membrane center) and move in that direction and keep going until we
hit the edge of the membrane (Figure 4). We are still working on this part.
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Figure 3. A screenshot from UW Segmentation Utility. The column on the left shows the list of
images (orange). The smaller image shows a preview of the predicted layers by deep learning
and the larger image shows the manually segmented or corrected (based on the model prediction)
image which will be exported to training set. On the right, the segmentation tools are seen.



Figure 4. Glomerular basement membrane is skletonized (red middle line) and its width is
measured at many random points (green lines)

Aim #3: To develop DL models for accurate semantic segmentation and quantification of
mesangium and mesangial matrix in DN.

1. The same segmentation utility developed for Aim#2 is being used for segmentation of
mesangial cells and mesangial matrix and preparation of a training set. This part is still
under development and refining.

2. Inorder to better understand the structure and morphology of mesangium and mesangial
matrix we have been making 3D models of mesangium using serial block face scanning
electron microscopy using a combination of Amira and Aivia softwares (Figure 5).
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Figure 5. ary using q g electron
microscopy. The light grey color marks the capillary and the complex blue structure is a
mesangial cell covering the capillary.

3. Publications:
A manuscript describing the FPW measurement by deep learning is in preparation.




