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Diabetic Complications Consortium 

 
Application Title: Automated quantification of ultrastructural pathology of diabetic 

nephropathy using deep learning. 

 

Principal Investigator: Behzad Najafian, M.D. 

 
  

1. Project Accomplishments:  
  

We have developed a novel validated deep learning model for foot process width (FPW) 

measurement on electron microscopy (EM) images. 

 

 

2. Specific Aims: 

 
Aim #1: To develop deep learning models for accurate estimation of foot process width in 

diabetic nephropathy.  

 
Results: We developed a novel model named Forknet for foot process width measurement. Our 

accomplishments are summarized  below: 

1. Model Design: A custom U-Net based model was designed to detect both PGBMI and the 

podocyte filtration slit diaphragms in two separate layers (Figure 1).  

2. Post process script for FPW calculation: The calculation of the FPW was done in a post 

process script. 

3. Model training: In order to reduce over-fitting and help improve validation accuracy 

during training, the images went through a randomized augmentation process whereby 

they were randomly scaled, flipped, shifted (adjusting mean and contrast), and rotated. 

The validation dataset was not augmented to keep validation scores closer to their real 

values and evaluate the training and test accuracy divergence. Images, during the training 

phase, were manually segmented with a 10% test split, meaning that every 1 in 10 images 

was not included in the model optimizer to allow detection of model under-fitting or 

model overfitting. Training involved a semi-online learning method, which initially 

trained the model on a small sample. When the manual segmentation data count reached 

~200 images, the model was used in the Segmentation Utility to segment new images, 

which were corrected by our team to be appended to the dataset. The training software 

reanalyzed the entire dataset and reduced the learning rate of the model as the accuracy 

plateaued. Only the highest accuracy, measured by dice similarity coefficient (DSC), 

models were saved for later use. This process was continued until the training dataset was 

complete. Once complete, the entire dataset was run to capture the highest validation 

DSC. Once a plateau was reached and the learning rate was dropped to 0, the model 

weights were repackaged with the Report Utility, and made available for remote 

predictions. 
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4. Compiling the package: After successfully trained on the entire dataset, the user interface, 

pre-processing, post-processing, weights, and architecture, and vision/deep learning 

frameworks were all compiled into one application. 

5. Report Utility: We built a post-processing tool called UW Report Utility that can process 

and view the predictions from the network in real time. The workflow and the post-

processing steps are shown in Figure 2. 

6. Model validation: Performance of the model was analyzed using two metrics, DSC and 

model accuracy. Each manual segmentation mask, per category, was compared to the 

prediction mask of the model. DSC was calculated by dividing the intersection by the 

total area of the masks, with an additional smoothing constant of 1 DSC =  (2|X ∩ Y| + 

1)/(|X| + |Y| + 1) for each category. DSC values range from 0-1, where 0 represents no 

pixel overlap and 1 represents perfect pixel overlap between the two masks. DSC values 

obtained from testing different set are provided in Table 1. 

7. Testing the model on diabetic biopsies. FPW was measured on digital electron 

microscopy images (~30,000x) obtained using systematic uniform random sampling from 

type 1 diabetic patients. The results are provided in table 2. 

 

 
Figure 1. Model of the ForkNet Architecture. Top: A schematic representation of the 

architecture showing an input EM Image to the left, conv2d blocks max pooling for downscaling, 

split branches, deconv2d and conv2d blocks for upscaling, and output layers to the right. Layer 
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connections are identified as solid directional lines, and skip connections are identified as dashed 

directional lines. Note: the skip connection from the membrane branch to the slit branch. Most 

residual connections used convolutional blocks rather than identity connections. Bottom: A-E 

and F-J show two examples of input images (A and F), resulting in corresponding PGBMI (B 

and G) and slit masks (C and H) with merged images, showing the masks superimposed on the 

input images (D and I); and the post-processing output with individual foot process width (FPW) 

measurements (E and J). F’-J’ show magnified views of the red boxes in corresponding F-J 

images. The size of the dots in the slit mask and merged images reflects the model confidence in 

prediction of a slit. 

 

 
  

Figure 2. ForkNet post-processing script general workflow. Top left image: a low magnification 

view of a glomerulus. The small squares represent systematic uniform random sampling (SURS) 

images taken at higher magnification (30,000 x) shown in bottom left that are used for foot 

process width (FPW) measurements. The flowchart on the right shows the post-processing 

workflow. The input images are normalized and go through various filters and processing, the 
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output of which will be semantic segmentation of filtration slits and podocyte – glomerular 

basement membrane interface (PGBMI). The length of the individual segments (PGBMI limited 

between two adjacent slits) is measured and exported. B. ForkNet model architecture. On the 

left, an input EM Image is shown (30,000 x, obtained using SURS). Different components of the 

architecture are shown in color coded boxes that are connected through solid or dashed lines as 

explained in the box at the bottom left corner. In summary, from left to right, the input image 

goes through conv2d downscaling blocks, split branches, and deconv2d upscaling to result in 

PGBMI and slit output masks. 

 

Table 1. Examples of dice coefficient (DSC) values for various training groups for podocyte - 

glomerular basement membrane interface (PGBMI) and filtration slit masks used for evaluation 

of model performance 

Training 
Group 

Mean DSC for PGBMI Mean DSC for Slit 

1 0.76 0.56 

2 0.36 0.27 

3 0.72 0.48 

4 0.70 0.56 

5 0.78 0.58 

6 0.72 0.46 

7 0.74 0.48 

 

 

Table 2. Output data from research biopsies from patients with type 1 diabetes: 

 

File Count 
Average 
Time 

Average 
FPW STD FPW 

Membrane 
Length 

Average 
Attachment 

STD 
Attachment 

1 9.356783867 0.145738572 88.75298309 69.90515137 178957.4996 350.56427 274.1158447 
2 13.66515827 0.160995133 58.45458221 29.50606918 193869.9907 383.7431946 292.4305725 
3 4 0.093974691 93.46107483 80.22080994 134298.8327 215.7985992 248.3533478 
4 11.8197279 0.160650975 72.82346344 35.89996338 294852.5307 386.850708 275.3671265 
5 7.361022472 0.125372871 76.33524323 44.09388351 231365.8618 286.0407715 267.0921021 
6 12.60063934 0.159464335 67.53728485 32.01740646 292522.6741 424.4464722 298.3026428 
7 5.98507452 0.104407704 77.49528503 46.45928955 76315.63316 282.505127 278.6502075 
8 14.1459856 0.182454294 71.86685944 37.06433105 152762.2283 473.7096558 329.6286621 
9 9.08791256 0.128895912 69.29936218 44.42921829 124206.1295 337.879364 377.1394653 
10 19.21904755 0.217414604 60.20162964 26.65054512 259508.7894 456.6531677 308.2755737 
11 17.52962875 0.202325484 58.04418564 27.12368393 308206.4905 423.4949036 322.8369141 
12 6.569832325 0.119271859 94.48657227 86.40921783 132805.7282 255.3275909 277.9932251 
13 6.344444275 0.114430881 75.62589264 44.28681183 118194.1071 269.6115112 263.5831299 
14 6.857142925 0.120465058 96.43178558 80.59918213 164940.8217 253.5434875 240.4208527 
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Aim #2: To develop DL models for accurate semantic segmentation of GBM and accurate 

estimation of GBM width in DN. 

1. Developing a Segmentation Utility: Creating a custom multi-class utility called UW 

Segmentation Utility using wxPython to manually classify podocyte-glomerular 

basement membrane interface (PGBMI) and foot process slits (Figure 3).  

2. Model training: A total of 8,152,303 nm of PGBMI were manually segmented in the 

training set. 

3. Skeletonization of the GBM (ie get the center line) and measuring the GBM width at 

random points. At each point we take the tangent of the line and then move a step away 

from the center defined as dx, at this new step we get the new tangent (or line distance 

that's closest to the membrane center) and move in that direction and keep going until we 

hit the edge of the membrane (Figure 4). We are still working on this part. 

 
Figure 3. A screenshot from UW Segmentation Utility. The column on the left shows the list of 

images  (orange). The smaller image shows a preview of the predicted layers by deep learning 

and the larger image shows the manually segmented or corrected (based on the model prediction) 

image which will be exported to training set. On the right, the segmentation tools are seen. 
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Figure 4. Glomerular basement membrane is skletonized (red middle line) and its width is 

measured at many random points (green lines) 

 

Aim #3: To develop DL models for accurate semantic segmentation and quantification of 

mesangium and mesangial matrix in DN. 

 
1. The same segmentation utility developed for Aim#2 is being used for segmentation of 

mesangial cells and mesangial matrix and preparation of a training set. This part is still 

under development and refining.  

2. In order to better understand the structure and morphology of mesangium and mesangial 

matrix we have been making 3D models of mesangium using serial block face scanning 

electron microscopy using a combination of Amira and Aivia softwares (Figure 5). 
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Figure 5. 3D reconstruction of a glomerular capillary using serial block face scanning electron 

microscopy. The light grey color marks the capillary and the complex blue structure is a 

mesangial cell covering the capillary. 

 

3. Publications:   
A manuscript describing the FPW measurement by deep learning is in preparation. 


