

Diabetic Complications Consortium

Application Title: The epigenome maps of human diabetic kidney disease

Principal Investigator: Katalin Susztak MD, PhD

1. Project Accomplishments:

Goals: Map chromatin modification patterns (H3K4me1/2/3, H3K36me3, H3K27me3, H3K27ac and CTCF) and gene regulatory regions in (A) **normal human** kidney cortical tubule cells (n=5) and (B) in patients with **stage 2 diabetic CKD** (n=5), DM (n=5) or HTN (n=5) but no detectable renal disease and (C) compare gene regulatory region in control and **stage 2 diabetic CKD** (GFR range 60-90 cc/min) (D) understand the **association between epigenetic modifications and transcript levels and downstream clinical and histological phenotype in patients.**

Accomplishments: We have collected more than 40 human kidney samples, including more than 5 from subjects with diabetes, 5 controls 5 from patients with hypertension and 5 with diabetic kidney disease. Samples have been cross-linked and sonicated into 200 bp fragments. Chromatin immunoprecipitation has been performed with 7 different histone tail antibodies. The precipitated DNA from the first sample has been submitted for Next Generation Sequencing analysis. We are in the process of analyzing the results. Our initial scan indicates that the results obtained with CTCF and H3K4me2 are not optimal, while the other 5 antibodies indicated high quality ChIP enrichment.

We have generated high quality ChIP results from several samples, we are finalizing the data analysis.

Here are some of the preliminary observations.

Figure1. The chromatin immunoprecipitation generated good quality data. Figure 1. shows low duplication read in the data, enrichment of tags on transcription start sites and significant correlation between H3K4me1 and H3K27ac; two different enhancer marks.

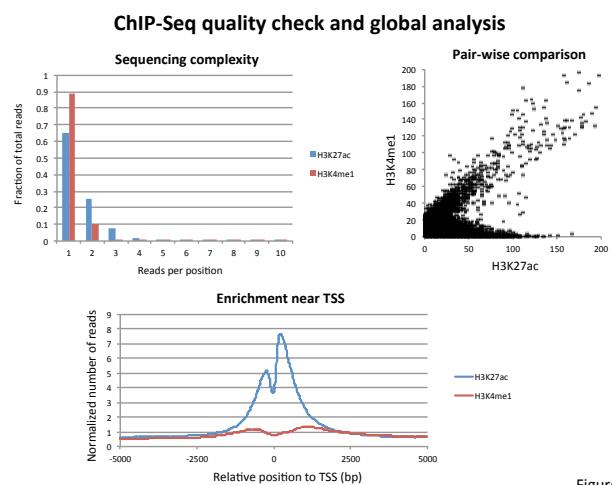


Figure1

Figure2. We have compared H3K27ac marks in control human cell line HKC8 and HK839; a human kidney sample obtained from a patient with stage 4 CKD (GFR; 26 cc/min/1.73m²). This analysis has identified significant overlap between human kidney samples and cultured human tubule samples, with transcripts and enhancers that are

HK839 H3K27ac comparison with control cell line

Identification of sample specific H3K27ac

Figure2

specifically expressed either in CKD tubule kidneys or cultured cells.

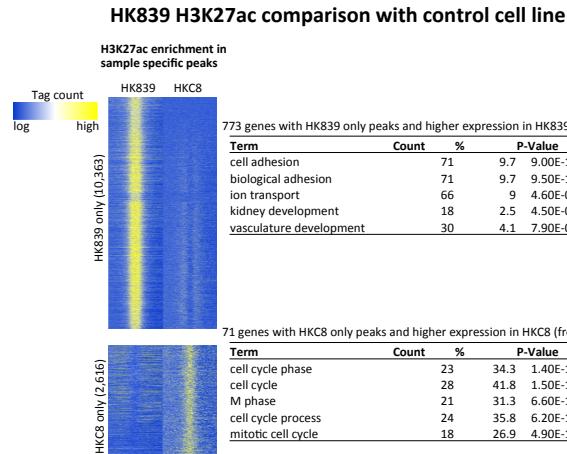


Figure3

Figure4 shows histone modification differences between a sample with normal kidney function HK333 compared to one obtained from a patient with CKD. The result indicates significant epigenetic changes in CKD samples.

H3K27ac comparison analysis between different patients

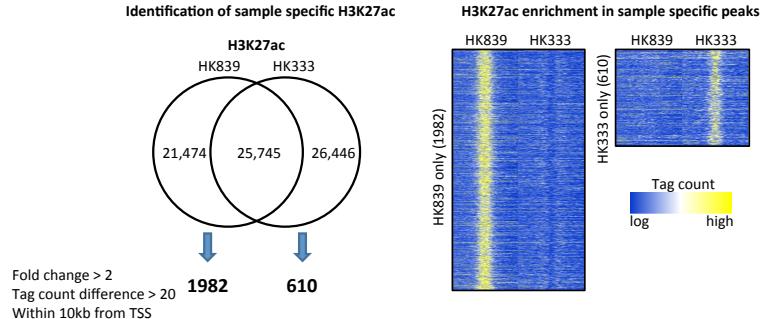
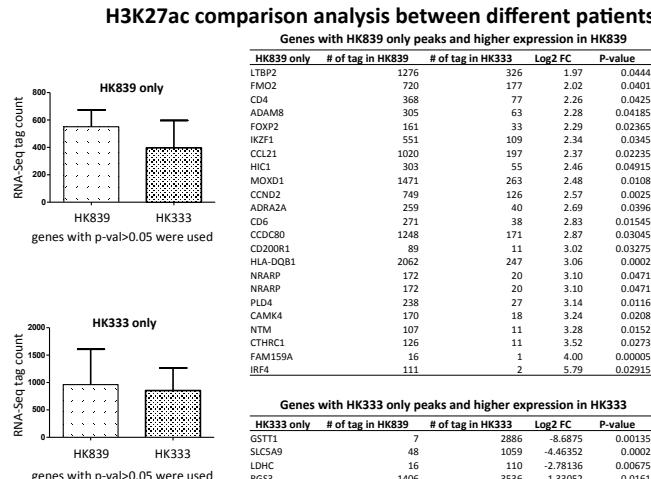



Figure4

Figure5 shows functional analysis and list of differentially expressed genes in control and CKD samples, including expression of specific genes and their fold

Figure5

change values.

Specific Aims:

The hypothesis of the proposal is that epigenetic changes **play key role in diabetic kidney disease development**. Here we propose to map chromatin modification patterns (H3K4me1/2/3, H3K36me3, H3K27me3, H3K27ac and CTCF) and gene regulatory regions in (A)

normal human kidney cortical tubule cells (n=5) and (B) in patients with DKD (n=5), DM (n=5) and HTN (n=5) but no detectable renal disease and (C) define differences in stage 2 diabetic CKD (D) understand the **association between epigenetic modifications, transcript levels and downstream clinical and histological phenotype development in DKD**.

2. Publications:

Poster presentation ASN Renal Week 2014
Manuscript in preparation.